Electricity generation from swine wastewater using microbial fuel cells.

نویسندگان

  • Booki Min
  • Jungrae Kim
  • Sangeun Oh
  • John M Regan
  • Bruce E Logan
چکیده

Microbial fuel cells (MFCs) represent a new method for treating animal wastewaters and simultaneously producing electricity. Preliminary tests using a two-chambered MFC with an aqueous cathode indicated that electricity could be generated from swine wastewater containing 8320 +/- 190 mg/L of soluble chemical oxygen demand (SCOD) (maximum power density of 45 mW/m2). More extensive tests with a single-chambered air cathode MFC produced a maximum power density with the animal wastewater of 261 mW/m2 (200 omega resistor), which was 79% larger than that previously obtained with the same system using domestic wastewater (146 +/- 8 mW/m2) due to the higher concentration of organic matter in the swine wastewater. Power generation as a function of substrate concentration was modeled according to saturation kinetics, with a maximum power density of P(max) = 225 mW/m2 (fixed 1000 omega resistor) and half-saturation concentration of K(s) = 1512 mg/L (total COD). Ammonia was removed from 198 +/- 1 to 34 +/- 1 mg/L (83% removal). In order to try to increase power output and overall treatment efficiency, diluted (1:10) wastewater was sonicated and autoclaved. This pretreated wastewater generated 16% more power after treatment (110 +/- 4 mW/m2) than before treatment (96 +/- 4 mW/m2). SCOD removal was increased from 88% to 92% by stirring diluted wastewater, although power output slightly decreased. These results demonstrate that animal wastewaters such as this swine wastewater can be used for power generation in MFCs while at the same time achieving wastewater treatment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pollution reduction and electricity production from dairy industry wastewater with microbial fuel cell

Taguchi L9 orthogonal array was implemented to select optimum values of process parameters and to attain the maximum removal of pollutants and power generation from dairy industry wastewater using double chambered salt bridge microbial fuel cell. The maximum chemical oxygen demand reduction, current, voltage, power, current density and power density in double chambered salt bridge microbial fue...

متن کامل

Treatment of Brewery Wastewater and Production of Electricity through Microbial Fuel Cell Technology

Renewable energy is an increasing need in our society. Microbial fuel cells (MFCs) represent a new method for treating wastewater and simultaneously producing electricity. In the present study, we demonstrated the feasibility of bioelectricity generation from brewery wastewater treatment using a mediator less MFC at different pH. We also demonstrated that addition of readily utilizable substrat...

متن کامل

Electric Power Generation from Municipal, Food, and Animal Wastewaters Using Microbial Fuel Cells

Here, we explore if microbial fuel cell (MFC) technology can replace activated sludge processes for secondary wastewater treatment. We will discuss the present limitations and problems of electric current generation when a complex wastewater is treated with a diverse and undefined community of microbes in large-scale systems. These challenges include low coulombic efficiencies, slow kinetic rat...

متن کامل

Analysis of ammonia loss mechanisms in microbial fuel cells treating animal wastewater.

Ammonia losses during swine wastewater treatment were examined using single- and two-chambered microbial fuel cells (MFCs). Ammonia removal was 60% over 5 days for a single-chamber MFC with the cathode exposed to air (air-cathode), versus 69% over 13 days from the anode chamber in a two-chamber MFC with a ferricyanide catholyte. In both types of systems, ammonia losses were accelerated with ele...

متن کامل

Removal of odors from Swine wastewater by using microbial fuel cells.

A single-chamber microbial fuel cell (MFC) was used to reduce 10 chemicals associated with odors by 99.76% (from 422 +/- 23 mug/ml) and three volatile organic acids (acetate, butyrate, and propionate) by >99%. The MFC produced a maximum of 228 mW/m(2) and removed 84% of the organic matter in 260 h. MFCs were therefore effective at both treatment and electricity generation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Water research

دوره 39 20  شماره 

صفحات  -

تاریخ انتشار 2005